31 research outputs found

    Improvement of design of a surgical interface using an eye tracking device

    Get PDF
    Surgical interfaces are used for helping surgeons in interpretation and quantification of the patient information, and for the presentation of an integrated workflow where all available data are combined to enable optimal treatments. Human factors research provides a systematic approach to design user interfaces with safety, accuracy, satisfaction and comfort. One of the human factors research called user-centered design approach is used to develop a surgical interface for kidney tumor cryoablation. An eye tracking device is used to obtain the best configuration of the developed surgical interface. Surgical interface for kidney tumor cryoablation has been developed considering the four phases of user-centered design approach, which are analysis, design, implementation and deployment. Possible configurations of the surgical interface, which comprise various combinations of menu-based command controls, visual display of multi-modal medical images, 2D and 3D models of the surgical environment, graphical or tabulated information, visual alerts, etc., has been developed. Experiments of a simulated cryoablation of a tumor task have been performed with surgeons to evaluate the proposed surgical interface. Fixation durations and number of fixations at informative regions of the surgical interface have been analyzed, and these data are used to modify the surgical interface. Eye movement data has shown that participants concentrated their attention on informative regions more when the number of displayed Computer Tomography (CT) images has been reduced. Additionally, the time required to complete the kidney tumor cryoablation task by the participants had been decreased with the reduced number of CT images. Furthermore, the fixation durations obtained after the revision of the surgical interface are very close to what is observed in visual search and natural scene perception studies suggesting more efficient and comfortable interaction with the surgical interface. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) and Short Post-Assessment Situational Awareness (SPASA) questionnaire results have shown that overall mental workload of surgeons related with surgical interface has been low as it has been aimed, and overall situational awareness scores of surgeons have been considerably high. This preliminary study highlights the improvement of a developed surgical interface using eye tracking technology to obtain the best SI configuration. The results presented here reveal that visual surgical interface design prepared according to eye movement characteristics may lead to improved usability.European Commissionpublisher versio

    Developmental Changes in Natural Viewing Behavior: Bottom-Up and Top-Down Differences between Children, Young Adults and Older Adults

    Get PDF
    Despite the growing interest in fixation selection under natural conditions, there is a major gap in the literature concerning its developmental aspects. Early in life, bottom-up processes, such as local image feature – color, luminance contrast etc. – guided viewing, might be prominent but later overshadowed by more top-down processing. Moreover, with decline in visual functioning in old age, bottom-up processing is known to suffer. Here we recorded eye movements of 7- to 9-year-old children, 19- to 27-year-old adults, and older adults above 72 years of age while they viewed natural and complex images before performing a patch-recognition task. Task performance displayed the classical inverted U-shape, with young adults outperforming the other age groups. Fixation discrimination performance of local feature values dropped with age. Whereas children displayed the highest feature values at fixated points, suggesting a bottom-up mechanism, older adult viewing behavior was less feature-dependent, reminiscent of a top-down strategy. Importantly, we observed a double dissociation between children and elderly regarding the effects of active viewing on feature-related viewing: Explorativeness correlated with feature-related viewing negatively in young age, and positively in older adults. The results indicate that, with age, bottom-up fixation selection loses strength and/or the role of top-down processes becomes more important. Older adults who increase their feature-related viewing by being more explorative make use of this low-level information and perform better in the task. The present study thus reveals an important developmental change in natural and task-guided viewing

    Evaluation of a surgical interface for robotic cryoablation task using an eye-tracking system

    Get PDF
    Computer-assisted navigation systems coupled with surgical interfaces (SIs) are providing doctors with tools that are safer for patients compared to traditional methods. Usability analysis of the SIs that guides their development is hence important. In this study, we record the eye movements of doctors and other people with no medical expertise during interaction with an SI that directs a simulated cryoablation task. There are two different arrangements for the layout of the same SI, and the goal is to evaluate whether one of these arrangements is ergonomically better than the other. We use several gaze related statistics some of which are employed in an SI design context for the first time. Even though the performance and gaze related analysis reveals that the two arrangements are comparable in many respects, there are also differences. Specifically, one arrangement leads to more saccades along the vertical and horizontal directions, lower saccade amplitudes in the crucial phase of the task, more locally clustered and yet globally spread viewing. Accordingly, that arrangement is selected for future use. The present study provides a proof of concept for the integration of novel gaze analysis tools developed for scene perception studies into the interface development process.European Commissionpost-prin

    The saccadic spike artifact in MEG

    Get PDF
    Electro- and magnetoencephalography (EEG/MEG) are the means to investigate the dynamics of neuronal activity non-invasively in the human brain. However, both EEG and MEG are also sensitive to non-neural sources, which can severely complicate the interpretation. The saccadic spike potential (SP) at saccade onset has been identified as a particularly problematic artifact in EEG because it closely resembles synchronous neuronal gamma band activity. While the SP and its confounding effects on EEG have been thoroughly characterized, the corresponding artifact in MEG, the saccadic spike field (SF), has not been investigated. Here we provide a detailed characterization of the SF. We simultaneously recorded MEG, EEG, gaze position and electrooculogram (EOG). We compared the SF in MEG for different saccade sizes and directions and contrasted it with the well-known SP in EEG. Our results reveal a saccade amplitude and direction dependent, lateralized saccadic spike artifact, which was most prominent in the gamma frequency range. The SF was strongest at frontal and temporal sensors but unlike the SP in EEG did not contaminate parietal sensors. Furthermore, we observed that the source configurations of the SF were comparable for regular and miniature saccades. Using distributed source analysis we identified the sources of the SF in the extraocular muscles. In summary, our results show that the SF in MEG closely resembles neuronal activity in frontal and temporal sensors. Our detailed characterization of the SF constitutes a solid basis for assessing possible saccadic spike related contamination in MEG experiments.the European Union ; the German Federal Ministry of Education and Researchpublisher versio

    The contributions of image content and behavioral relevancy to overt attention

    Get PDF
    During free-viewing of natural scenes, eye movements are guided by bottom-up factors inherent to the stimulus, as well as top-down factors inherent to the observer. The question of how these two different sources of information interact and contribute to fixation behavior has recently received a lot of attention. Here, a battery of 15 visual stimulus features was used to quantify the contribution of stimulus properties during free-viewing of 4 different categories of images (Natural, Urban, Fractal and Pink Noise). Behaviorally relevant information was estimated in the form of topographical interestingness maps by asking an independent set of subjects to click at image regions that they subjectively found most interesting. Using a Bayesian scheme, we computed saliency functions that described the probability of a given feature to be fixated. In the case of stimulus features, the precise shape of the saliency functions was strongly dependent upon image category and overall the saliency associated with these features was generally weak. When testing multiple features jointly, a linear additive integration model of individual saliencies performed satisfactorily. We found that the saliency associated with interesting locations was much higher than any low-level image feature and any pair-wise combination thereof. Furthermore, the low-level image features were found to be maximally salient at those locations that had already high interestingness ratings. Temporal analysis showed that regions with high interestingness ratings were fixated as early as the third fixation following stimulus onset. Paralleling these findings, fixation durations were found to be dependent mainly on interestingness ratings and to a lesser extent on the low-level image features. Our results suggest that both low- and high-level sources of information play a significant role during exploration of complex scenes with behaviorally relevant information being more effective compared to stimulus features.publisher versio

    Real and implied motion at the center of gaze

    No full text
    Due to copyright restrictions, the access to the full text of this article is only available via subscription.Even though the dynamicity of our environment is a given, much of what we know on fixation selection comes from studies of static scene viewing. We performed a direct comparison of fixation selection on static and dynamic visual stimuli and investigated how far identical mechanisms drive these. We recorded eye movements while participants viewed movie clips of natural scenery and static frames taken from the same movies. Both were presented in the same high spatial resolution (1080 × 1920 pixels). The static condition allowed us to check whether local movement features computed from movies are salient even when presented as single frames. We observed that during the first second of viewing, movement and static features are equally salient in both conditions. Furthermore, predictability of fixations based on movement features decreased faster when viewing static frames as compared with viewing movie clips. Yet even during the later portion of static-frame viewing, the predictive value of movement features was still high above chance. Moreover, we demonstrated that, whereas the sets of movement and static features were statistically dependent within these sets, respectively, no dependence was observed between the two sets. Based on these results, we argue that implied motion is predictive of fixation similarly to real movement and that the onset of motion in natural stimuli is more salient than ongoing movement is. The present results allow us to address to what extent and when static image viewing is similar to the perception of a dynamic environment.MULTISENSE ; the Cognition and Neuroergonomics/Collaborative Technology Allianc

    The relationship between handedness and valence: A gesture study

    No full text
    People with different hand preferences assign positive and negative emotions to different sides of their bodies and produce co-speech gestures with their dominant hand when the content is positive. In this study, we investigated this side preference by handedness in both gesture comprehension and production. Participants watched faceless gesture videos with negative and positive content on eye tracker and were asked to retell the stories after each video. Results indicated no difference in looking preferences regarding being right- or left-handed. Yet, an effect of emotional valence was observed. Participants spent more time looking to the right (actor's left) when the information was positive and to the left (actor's right) when the information was negative. Participants' retelling of stories revealed a handedness effect only for different types of gestures (representational vs beat). Individuals used their dominant hands for beat gestures. For representational gestures, while the right-handers used their right hands more, the left-handers gestured using both hands equally. Overall, the lack of significant difference between handedness and emotional content in both comprehension and production levels suggests that body-specific mental representations may not extend to the conversational level.BAGEP Awar

    Effects of luminance contrast and its modifications on fixation behavior during free viewing of images from different categories

    No full text
    Due to copyright restrictions, the access to the full text of this article is only available via subscription.During viewing of natural scenes, do low-level features guide attention, and if so, does this depend on higher-level features? To answer these questions, we studied the image category dependence of lowlevel feature modification effects. Subjects fixated contrast-modified regions often in natural scene images, while smaller but significant effects were observed for urban scenes and faces. Surprisingly, modifications in fractal images did not influence fixations. Further analysis revealed an inverse relationship between modification effects and higher-level, phase-dependent image features. We suggest that highand mid-level features – such as edges, symmetries, and recursive patterns – guide attention if present. However, if the scene lacks such diagnostic properties, low-level features prevail. We posit a hierarchical framework, which combines aspects of bottom-up and top-down theories and is compatible with our data.European Unionpublisher versio
    corecore